Barrera hematoencefalica y aminoacidos

Barrera hematoencefalica y aminoacidos

Barrera hematoencefalica y aminoacidos | scitecnutrition.cl

¿QUE ES LA BARRERA HEMATOENCEFÁLICA (BHE)?

Es una estructura histológica y funcional que protege al Sistema Nervioso Central. Se encuentra constituida por células endoteliales que recubren el sistema vascular cerebral y es importante para el mantenimiento de la homeostasis de las neuronas y células gliales.

Además, bloquea el acceso de sustancias tóxicas endógenas o exógenas desde la sangre al tejido nervioso.

LAS CÉLULAS ENDOTELIALES CEREBRALES SON DIFERENTES A LAS DE OTROS ÓRGANOS EN DOS ASPECTOS:

  • Presentan uniones intercelulares estrechas, que evitan el paso transcapilar de moléculas polares como iones y proteínas.
  • Carecen de fenestraciones y vesículas pinocíticas. Están cubiertas por una membrana basal, pericitos y más afuera por los pies peri capilares de astrocitos que cubren más del 90% de su superficie.

Estas células endoteliales, poseen muchas mitocondriasenzimas y numerosos sistemas para el transporte de nutrientes y de otras sustancias hacia el interior y exterior del cerebro.

Hay zonas del encéfalo con capilares donde no existe BHE. En dichas regiones las características morfológicas del endotelio son similares a otros lechos microvasculares sistémicos, con fenestraciones, vesículas y pérdida de la continuidad en las unionesintercelulares.

Los principales ejemplos en los cuales se encuentran dichas áreas incluyen: la hipófisis, la eminencia media, el área postrema, el receso pre óptico, la glándula pineal y el plexo coroideo.

La barrera hematoencefálica más que una capa pasiva de células, es un complejo metabólico activo con múltiples bombas, transportadores y receptores para neurotransmisores y citoquinas.

El endotelio capilar que constituye la barrera hematoencefálica, es permeable a ciertas sustancias necesarias para el metabolismo cerebral, tales como oxígenoglucosa y aminoácidos esenciales.

La facilidad de una sustancia para atravesar la BHE dependerá:

  • A) Grado de liposolubilidad (cuanto más liposoluble sea, más facilidad para traspasarla)
  • B) Si está ionizada o no (las ionizadas tienen grandes dificultades para entrar)
  • C) Tamaño molecular (a mayor tamaño mayor dificultad para penetrar).

Los compuestos altamente liposolubles como etanol, cafeína, oxígeno, entre otros, atraviesan fácilmente la BHE. La glucosa es un substrato energético primordial para el cerebro, por lo que requiere un sistema de transporte que le permite atravesar el endotelio fácilmente.

Con respecto a aminoácidos existen cuatro sistemas transportadores en la barrera hematoencefálica:

  1.  Grandes aminoácidos neutros: fenilalanina, tirosina, los BCAA (leucina, isoleucina y valina), triptófano, metionina e histidina, penetran la BHE tan rápido como la glucosa. Estos aminoácidos esenciales no se sintetizan en el tejido nervioso y deben ser suministrados por las proteínas de la dieta siendo algunos de ellos precursores de neurotransmisores sintetizados en el cerebro. Debido a que un solo transportador interviene en el movimiento transcapilar de estos aminoácidos, ellos compiten entre sí para penetrar al sistema nervioso, de tal manera que la elevación en las concentraciones séricas de uno de ellos inhibe el paso de los otros a través de la BHE.
  2. Los pequeños aminoácidos neutros: alanina, glicina, prolina y el ácido gamma aminobutirico (GABA), son movilizados por otro transportador, que sólo funciona para llevarlos del cerebro a la sangre.
  3. Los aminoácidos de carácter básicos: lisina y arginina tienen sistemas transportadores específicos.
  4. Los aminoácidos de carácter ácido: aspartato y glutamato, que son importantes intermediarios metabólicos y neurotransmisores, también tienen sistemas transportadores específicos.

Durante el ejercicio intenso y prolongado gran parte de los aminoácidos BCAA en sangre son consumidos por los músculos. Cuando esto sucede, hay más triptófano en la sangre y menos BCAA circulantes.

Por lo tanto, el triptófano atraviesa con mayor facilidad la BHE y pasa al tejido cerebral produciéndose mayor cantidad de serotonina, cuyo incremento facilitaría el desarrollo de «fatiga muscular central».

Por otra parte los niveles normales de serotonina activan las motoneuronas y promueven a seguir adelante con el ejercicio. No obstante, su aumento actúa inhibiendo estas mismas células nerviosas de manera que la contracción muscular se debilita produciéndose la sensación de fatiga.

Los niveles de serotonina en el área de los movimientos voluntarios constituyen un mecanismo de seguridad que evita que las neuronas motoras se vuelvan hiperactivas cuando se ejecutan ejercicios extenuantes, reduciendo de este modo la actividad muscular perjudicial.

Si hay un aporte extra de aminoácidos, se produce una mayor concentración de los mismos en la sangre y la cantidad de triptófano que atraviesa la BHE disminuye.  Por consiguiente, hay menor síntesis de serotonina y menores posibilidades de llegar a la fatiga muscular de origen central.

INVESTIGACIONES MÉDICAS RECIENTES PLANTEAN QUE LA ADMINISTRACIÓN DE AMINOÁCIDOS BCAA, DURANTE EL EJERCICIO PROLONGADO MEJORA LA RESPUESTA FÍSICA Y PSÍQUICA DEL DEPORTISTA.

*Nota: vesículas pinocíticas son aquellas formadas por invaginación de la membrana celular y que contienen líquido con nutrientes disueltos.

Autor: Dr. Renato Orellana Chamudis.


Otros artículos que te pueden interesar

En que Alimentos encontramos Proteinas

En que Alimentos encontramos Proteinas

En que Alimentos encontramos ProteinasLas proteínas ocupan un lugar de máxima importancia entre las moléculas constituyentes de los seres vivos. Prácticamente todos los procesos biológicos dependen de la presencia o la actividad de este tipo de moléculas. Bastan algunos ejemplos para dar idea de la variedad y trascendencia de las funciones que desempeñan como: Estructural: glucoproteínas, en las membranas celulares; histonas, que en los cromosomas junto con el ADN forman la cromatina; colágeno y elastina en el tejido conjuntivo, queratina en la epidermisEnzimática: las enzimas son las proteínas más numerosas y especializadas, actúan como biocatalizadores de reacciones químicasHormonal: insulina, glucagón, hormona del crecimiento o GH, calcitonina, parathormona, ACTH (hormona adrenocorticotrópica); GHRH (hormona liberadora de GH)Contráctil: actina, miosina, troponina, tropomiosina, titina, nebulinaDefensiva: inmunoglobulinas, trombina, fibrinógenoTransporte: hemoglobina, hemocianina, citocromosReserva: ovoalbúmina, lactoalbúminaLas proteínas de todos los seres vivos están determinadas mayoritariamente por su genética , es decir, la información genética establece en gran medida qué proteínas tiene una célula , un tejido y un organismo . La síntesis proteica es un proceso complejo cumplido por las células según las directrices de la información suministrada por los genes .Para sintetizar una determinada proteína se necesita de la presencia de aá y éstos son aportados por las proteínas de la dieta alimenticia. El requerimiento nutricional es ingerir 1 g de proteína/1 Kg de peso corporal/día. En caso de deportistas, gimnastas o gente con sarcopenia, este valor es mayor, y su magnitud va a depender de las condiciones y necesidades específicas de cada persona. Además de la dieta, la cantidad y la calidad de proteínas a ingerir puede incrementarse con el consumo de suplementos de proteínas y/o de aá, como también el de alimentos enriquecidos en proteínas.¿QUÉ INCLUYEN LAS FUENTES DIETÉTICAS DE PROTEÍNA?Las fuentes dietéticas de proteínas incluyen carne, huevos, legumbres, frutos secos, cereales, verduras y productos lácteos tales como queso o yogurt . Tanto las fuentes de proteínas animales como las vegetales poseen los 20 aminoácidos necesarios para la alimentación humana, no obstante, diversas investigaciones han concluido que las proteínas animales que contienen todos los aminoácidos esenciales ( leche , huevos , carne ) y la proteína de soya son las más valiosas para el organismo.Dr. Renato Orellana Chamudis....

Que son las Proteinas

Que son las Proteinas

Que son las Proteinas – Alimentos de Primera CalidadSon biomoléculas formadas principalmente por carbono, hidrógeno, oxígeno y nitrógeno (CHON). Pueden además contener azufre (S) y en algunos tipos de proteínas existe también fósforo, hierro, magnesio y cobre entre otros elementos.El término proteína proviene de la palabra francesa protéine y ésta del griego πρωτεῖος (proteios), quesignifica 'prominente, de primera calidad'. Si bien hay ligeras variaciones en diferentes proteínas, el contenido de nitrógeno representa, por término medio, el 16% de la masa total de la molécula ; es decir, cada 6,25g de proteína contienen 1 g de N. El factor 6,25 se utiliza para estimar la cantidad deproteína existente en una muestra a partir de la medición de N de la misma.¿ DE QUE SE FORMAN LAS PROTEÍNAS?Las proteínas están formadas de pequeñas unidades moleculares llamadas aminoácidos (aá) que se unen entre sí mediante enlaces peptídicos. La unión de dos aá da origen a un dipéptido, si son tres los aá unidos tenemos un tripéptido. Si el número de aá que forma la molécula no es mayor de 10, se denomina oligopéptido, si es superior a 10 se llama polipéptido, y si el número de aá unidos por enlaces peptídicos es superior a 50 ya se habla de proteína.Las proteínas se clasifican en: a) holoproteínas, formadas solamente por aá y b) heteroproteínas, formadas por una fracción proteica y por un grupo no proteico denominado grupo prostético.Las holoproteínas a su vez se subdividen en globulares y fibrosas: a) son proteínas globulares: la albúmina, la insulina, la hormona del crecimiento, la prolactina y una enorme cantidad de enzimas; b) son proteínas fibrosas: el colágeno y la queratina.Las heteroproteínas se subdividen en: a) glicoproteínas (ribonucleasa, mucoproteínas, inmunoglobulinas (anticuerpos), hormona luteinizante); b) lipoproteínas (de alta, baja y muy baja densidad, son transportadores sanguíneos de lípidos, especialmente colesterol); c) nucleoproteínas (nucleosomas de la cromatina, ribosomas); y d) cromoproteínas (hemoglobina, mioglobina, citocromos)....

Antioxidantes y radicales libres

Antioxidantes y radicales libres

Antioxidantes y radicales libresNuestras las células requieren energía para realizar sus funciones. Dicha energía se genera en las mitocondrias a partir de los nutrientes que ingerimos, principalmente glucosa, y se almacena en forma de ATP. Sin embargo, el metabolismo de los alimentos, al igual que la respiración y el ejercicio físico, producen ciertos desechos como dióxido de carbono, residuos nitrogenados, y en menor cantidad, fragmentos de moléculas llamadas especies reactivas del oxigeno (ROS, por sus siglas en inglés) que incluyen radicales libres (RL) y otras sustancias reactivas pro-oxidantes, todos los cuales deben ser excretados y/o neutralizados.Por otra parte, estamos también cada vez más expuestos a elementos del medio ambiente que crean RL como polución industrial, tabaco, radiación, campos electromagnéticos, aditivos químicos en alimentos procesados y pesticidas, entre otros.Un RL es cualesquier especie química, ya sea átomo, molécula o ión, que contenga a lo menos un electrón sin aparear en su orbital más externo y que sea a su vez capaz de existir en forma independiente (o libre). Es inestable y altamente reactivo. Su misión, como oxidante, es la de remover el electrón que les hace falta, de las moléculas que están a su alrededor para obtener su estabilidad. La molécula atacada (que ahora no tiene un electrón) se convierte entonces en otro RL y de esta manera se inicia una reacción en cadena que dañará muchas células y puede ser indefinida si los antioxidantes no intervienen.Los RL de origen endógeno más importantes son el anión superóxido, generado en la mitocondria a nivel de la cadena de transporte de electrones (entre el 1% al 3% del oxígeno que ingresa a la mitocondria es convertido en RL), el óxido nítrico, producido en las células endoteliales de los vasos sanguíneos, el radical hidroxilo y el radical peróxido. La producción controlada de estos RL es fisiológica y fundamental para asegurar nuestra salud. Por ejemplo, las células del sistema inmune crean RL para matar bacterias y virus. A objeto de neutralizar el exceso de RL contamos con mecanismos de defensa constituidos por antioxidantes endógenoselaborados según programas genéticos individuales, mecanismos que lamentablemente disminuyen conforme envejecemos. Cuando la producción de RL supera a la capacidad del sistema de defensa que los anulan hablamos de estrés oxidativo.Los RL ocasionan acciones adversas desastrosas a nivel celular como:a) agresión a los receptores de membrana celular al tomar electrones de los lípidos y proteínas estructurales, alterando sus funciones como intercambio de nutrientes y limpieza de materiales de desecho;b) pérdida de la energía celular por daño de las mitocondrias al afectar la cadena respiratoria con menor producción de energía (ATP) y concomitantemente mayor generación de RL;c) ataque químico al ADN (material genético) que provee la matriz para la replicación celular, impidiendo a la célula su reproducción;d) mutaciones del ADN que pueden conducir al crecimiento anormal de células y al desarrollo tanto de tumores benignos como malignose) contribución al proceso del envejecimiento general por alteración de la producción de colágeno (piel seca y arrugada);f) finalmente, apoptosis o muerte celular.Los RL son neutralizados con los antioxidantes que son sustancias químicas que previenen o retardan la oxidación y en algunos casos logran revertir el daño oxidativo de las moléculas afectadas.Los antioxidantes podemos clasificarlos en endógenos (sintetizados por el organismo), exógenos (suministrados por la alimentación) y elementos químicos:Endógenos: a) enzimáticos: superóxido dismutasa (SOD); catalasa (CAT); glutation peroxidasa; b) no enzimáticos: glutatión, coenzima Q, melatonina, ácido úrico, ácido lipoico, metalotioneína. Exógenos: a) vitaminas antioxidantes: ácido ascórbico (vitamina C); alfa-tocoferol (vitamina E); beta caroteno (vitamina A); b) carotenoides (luteína, zeaxantina, licopeno); c) polifenoles (flavonoides y no flavonoides).Elementos químicos: a) oligoelementos antioxidantes: selenio y zinc; b) cofactores antioxidantes: cobre, magnesio, manganeso y azufre.Si bien los antioxidantes exógenos forman parte de una dieta ideal, pueden resultar numéricamente ineficaces cuando se trata de controlar números exageradamente elevados de RL como es el caso de un estrés oxidativo. Los alimentos que son una buena fuente de antioxidantes son las plantas comestibles, especialmente sus frutos, hojas y semillas.Destacan las frutas (berries, manzana, ciruela, granada y pomelo); verduras frescas; tomates y pimentones; algunos cereales como trigo y cebada; algunos frutos secos como nueces, almendras y pistachos; el cacao; diversas especias culinarias como orégano, canela, clavo de olor y romero; bebidas como té verde, café de grano, vino tinto e infusiones de hierbas.La evidencia científica acumulada demuestra que mientras mayor es el consumo de alimentos ricos en antioxidantes menor es la probabilidad de llegar al estrés oxidativo y consecuentemente desarrollar enfermedades como patologías cardiovasculares (ateroesclerosis, hipertensión arterial); enfermedades inflamatorias crónicas (artritis reumatoide, lupus, colitis ulcerosa, hepatitis); enfermedad periodontal; enfermedades neurodegenerativas (Alzheimer, accidente vascular encefálico), insuficiencia renal crónica, diabetes mellitus y enfermedades tumorales.Diversos tipos de antioxidantes los encontramos también en suplementos y vitaminas, que deben ser administrados cuando la dieta no los aporta en cantidades suficientes o cuando sus requerimientos están aumentados como es el caso de ejercicio físico extenuante o de personas expuestas a un medio ambiente tóxico y contaminado con RL. No obstante, su dosificación debe ser controlada ya que la ingestión desmesurada de antioxidantes resulta muchas veces perjudicial para la salud según lo muestran estudios médicos recientes. La clave está en el equilibrio entre oxidantes (RL) y antioxidantes, debiendo evitarse un exceso de cualquiera de ellos en detrimento del otro.Autor: Dr. Renato Orellana Chamudis....

BCAA: Aumento de masa muscular

BCAA: Aumento de masa muscular

Los aminoacidos ramificados BCAA o aminoácidos de cadena ramificada (en inglésBCAA, sigla de Branched-Chain Amino Acids) se denominan así porque tienen una estructura alifática lineal con una cadena ramificada y son la leucina, la isoleucinay la valina.Se trata de aminoácidos esenciales que no los puede producir nuestro cuerpo y en consecuencia, deben provenir de la dieta o de suplementos. Son también los aminoácidos más hidrófobos y constituyen aproximadamente la tercera parte de los músculos esqueléticos en el cuerpo humano.ENTRE SUS FUNCIONES DEBE DESTACARSE:Participan en la síntesis de péptidos y proteínas siendo precursores de la síntesis de aminoácidos, entre ellos alanina y glutamina.Son indispensables para el mantenimiento y el crecimiento muscular.Suministran energía metabólica a los músculos así como a otros órganos (efecto ergogénico).Detienen la proteólisis tanto en sujetos vivos como en muestras de laboratorio; el catabolismo desgasta el músculo esquelético generando un balance de nitrógeno negativo.Participan de otras funciones de vital importancia como reparación de tejidos, formación de células, anticuerpos, ARN y ADN.En el músculo el contenido de BCAA aumenta durante las primeras fases del ejercicio y posteriormente decrece. La razón o velocidad de disminución depende directamente de la intensidad del ejercicio.Suelen incrementar los niveles de serotonina cuando el cerebro recibe niveles elevados de triptófano (aminoácido precursor de la serotonina).SUPLEMENTOS DIETÉTICOSLos BCAA se utilizan frecuentemente como suplementos dietéticos en atletas que practican musculación a objeto de evitar el overtraining. El término overtraining se refiere al sobreentrenamiento que es la condición física, conductual y emocional que se produce cuando la intensidad y frecuencia del ejercicio excede la capacidad de recuperación.También se emplean como suplementos dietéticos en pacientes con patologías que evolucionan con catabolismo (degradación) proteica acelerada como quemaduras, cáncer, infecciones crónicas, etc.Su empleo como suplemento alimenticio en deportes anaeróbicos suele hacerse con protocolos de dos tomas, generalmente media hora antes y después del ejercicio. Algunos autores mencionan dos tomas, pero media hora antes y durante el ejercicio.CONSEJOSSe aconseja tomar los BCAA junto con agregados de proteína o con carne magra, así como con múltiples vitaminas (dentro del grupo B) y minerales. No se han detectado problemas o efectos secundarios en dosis por debajo de los doce gramos diarios. Si apareciera intolerancia a su ingestión se recomienda detener la suplementación. Consumir grandes cantidades de BCAA durante el ejercicio puede hacer disminuir la absorción de agua en el intestino lo que puede inducir a problemas gastrointestinales.Los productos BCAA suelen contener una proporción de 2:1:1 de leucina, isoleucina y valina. Sin embargo, como el aminoácido más importante es la leucina ya que estimula directamente la síntesis de proteínas en los músculos, incrementa la recuperación muscular y protege los tejidos musculares de una crisis catabólica, el nuevo estándar de los BCAA introduce una proporción dominante de leucina 8:1:1 en comparación con la fórmula anterior. Algunos suplementos de BCAA adicionan glutamina en la forma de dipéptido estable (L-alanina L-glutamina) y vitamina B6, nutriente fundamental en la síntesis y procesos metabólicos de proteínas, en el funcionamiento del sistema inmunológico y en el correcto trabajo del cerebro y del sistema nervioso.Autor: Dr. Renato Orellana Chamudis...